
Nilesh Maltare Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 3(Version 1), March 2014, pp.224-227

www.ijera.com 224 | P a g e

Features for Parallel Pattern Based Programming System for

Multicore

Nilesh Maltare
Asst. Professor IT (M.B.I.C.T.) New V.V. Nagar Anand, India

Abstract
This paper provides analysis of features provided by existing Parallel design patterns based Programming

System. Objective of this paper is to examine features required to exploit parallelism with ease in Multicore

Architectures.

Index Terms—Parallel Computing, Parallel Pattern, Multicore Programming.

I. INTRODUCTION
Recent trends in hardware design towards

multicore CPUs with hundreds of cores. It demands

for better programs which can exploit multicore. In

other words ―sequential programs need to be

refactored for parallelism‖[1]. According to Moore's

Law ―All software developers have abstracted away

the processor assuming that H/W will gets faster and

faster‖ [2]. We need to support new features and

larger data sets. It is clear we have to program for

performance. There will be emphasis on portability,

robustness, malleability and maintainability. After that

complexity needs to be managed.

Program can exploit parallelism through

various constructs threads,loop level block level

parallelism. H/W and Architectural changes offers

new way to exploit parallelism. We generally obtain

parallelism through task decomposition and mapping

of task to processes. Earlier we have observed data

movement is bottleneck and we have to pay more cost

in communication. With Multicore Architecture we

should not afraid to decompose task. Even ultra fast

synchronization in Multicore architectures motivate

for use of synchronization constructs.

The use of multiprocessor machines has

accelerated the importance of parallel programs. The

shared multiprocessor machine has become a

challenge and the development of the parallel

applications is growing slowing. While developing

parallel software, programmers must worry about task

decomposition, scheduling, communication, and

synchronization.

II. CHALLENGES IN EXPLOITING

PARALLELISM
Since inception of programming we have

followed sequential programming paradigm, Thinking

parallel or decomposing problems into parallel tasks is

hard for many of us. These all increases complexity

and work for programmer. Parallelism is not easy to

implement, Parallelism cannot be abstracted.

While Parallel programming programmer is

exposed to parallel architectures, which creates

parallel program biased to particular architecture.

Architecture influences Programming models we can

observe:

Message Passing model provides MPI which

is suitable for Distributed Shared Memory where

processes communicates through messages.

Thread Based Programming models uses

threads which uses shared memory approach.

We can notice that there is no unique

execution model and programming paradigm to deal

wit parallelism. That is the reason programmer needs

to work for details of everything. Programmer need to

work for lower level API's to exploit parallelism.

 Debugging of Parallel program difficult due to:

 Number of possible execution orderings

 Incorrect Synchronization leads to Race

condition

 Even Correct program may lead to deadlock

III. PATTERNS AND PARALLELISM
Patterns originated as an architectural

concept by Christopher Alexander. Design pattern is a

general reusable solution to a commonly occurring

problem within a given context in software

design.[12] A design pattern is not a finished design

that can be transformed directly into source or

machine code.[10] Use of Patterns to exploit

parallelism is not new. DpnDP, a Design Pattern

Based Parallel Programming System was proposed

by Siu and Singh, 1997.[5] . Patterns for Parallel

Programming demonstrated in book by Matson

2002.[4] CO2P3S (Correct Object Oriented Pattern

based Parallel Programming System) is a tool

provides abstractions in the PDP.[6]

Pattern–based parallel programming system

and ideal characteristics is described in [6] :

RESEARCH ARTICLE OPEN ACCESS

Nilesh Maltare Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 3(Version 1), March 2014, pp.224-227

www.ijera.com 225 | P a g e

 Structuring the Parallelism

 Programming

 Performance

 Portability

 Support

In Structuring Parallelism, we need to

provide clean separation between the parallel structure

of a program and the application code. It provides

easy modification. Code libraries fail to meet this

concern. In all code libraries, the structure of the

parallelism is embedded directly in the application

code via library calls. This structure can only be

changed by modifying the code, which may involve

significant programming effort. For instance, for

message passing libraries such as PVM [21]and

MPI[9], the parallel structure is dictated by the

communication structure. A program using pthreads

or Java threads must explicitly create the threads that

will form the parallel structure of the program.

Most parallel programming languages and

language extensions also suffer from the same

problem by using extra syntax for specifying

parallelism in the program code. Some java based

languages support data parallelism by including

parallel loops (with a forall statement, for example)

and extra syntax for parallel array expressions.

Some parallel languages, such as High

Performance FORTRAN(HPF) [17] and OpenMP

[18] reduce the separation problem by inserting

parallel directives as comments that are used only by

special compilers. These directives can be added or

removed with less effort.

The only parallel programming language that

eliminate this problem is P3L, a pattern based

programming language. A P3L program consists of a

set of named code fragments and a separate pattern

description that indicates how the fragments and

patterns are composed into a larger program. It is

observed that parallel structure can be separated from

the application code through indirection.

 In explicit message–passing systems such as

DPnDP [5], Tracs, and Parsec, all messages are sent

through channels via ports. The ports do not contain

any reference to the process that will actually receive

the data, and so decouple the two communicating

processes. Thus, a process may be freely

interchanged with another that exchanges the same

data.

Parallel Architectural Skeletons (PAS) [8]

take a slightly different approach. They create an

additional process that serves as the fixed entry point

to the processes that make up the pattern. This fixed

entry point allows a pattern to be replaced with

another in a seamless manner.

A system should allow patterns to be

composed hierarchically, refining the computation

within a given pattern using another pattern. In

general, a single parallel structure cannot be used to

effectively parallelize all parts of a large computation.

Since a user can generally place communication calls

anywhere in application code, message–passing and

thread libraries meet this characteristic. Without

hierarchical resolution, the user must draw one large

graph for the structure of the complete program.

Programs built using skeletons or frameworks can

experience composition problems. Root cause of these

problems is that frameworks and skeletons were

created with the assumption that only one will be used

in a given application. There should be no rules

regarding how patterns can be composed. While code

libraries meet this concern because of their generality.

Among the pattern–based programming systems

(DPnDP, Enterprise,FrameWorks, Parsec, Tracs, and

PAS), only FrameWorks, the oldest system, does not

exhibit independence of patterns. Specific

combinations of structures could not be properly

supported.

Pattern based Programming System can

provide many feature to extract parallelism available

but it is important to focus on Ease of Programming

also. Ease of Programming and Code Efficiency are

contradictory objective. Use of pattern based approach

can simplify hard parallel code.

It should be possible to achieve the best

possible performance for a program but it is

dependent on selection of the parallel patterns.

General–purpose parallel libraries can provide the

best performance. Programmer can optimize program

by reducing communication and synchronization

costs.

Applications should be able to ported on

different architectures. The performance of a program

may suffer on different architecture, but application

should continue to run. Unlike Shared memory

machines, message–passing systems continue to

communicate using expensive network messages

rather than taking advantage of cheaper memory–

based communication mechanisms.

IV. FEATURES IN PARALLEL PATTERN

BASED PROGRAMMING SYSTEM FOR

MULTICORE
Although there are number of Parallel

Programming Platforms tools and techniques

available ,still we need Parallel Programming System

for multicore provides:

 Ease of Programming : Programmer need not to

learn difficult syntax, lower level API's to

exploit parallelism. It makes parallel programs

also difficult to debug and understand.

Abstraction will be key to achieve same.

Abstraction can eliminate problem faced in

debugging Parallel Program.

Nilesh Maltare Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 3(Version 1), March 2014, pp.224-227

www.ijera.com 226 | P a g e

 Language Support : It should support common

languages to leverage skills of programmers.

Parallelism can be extracted by large group if

System meet same. Message passing library

does not impose any changes to programming

language. Programmer needs to use extra

communication calls. Most of the programmers

are comfortable with common languages like

C,C++, Java that is the reason most application

can take benefit of Parallelism.

 Support for Improving Performance : System

should help programmer to achieve the best

possible performance for a program.

Programmers can select parallel patterns to

reduce communication and synchronization cost.

Dynamic threading and other techniques should

be available with convenient model of use.

 Flexibility : System simplicities changes in

parallel program, because in parallel

programming small changes introduces bugs.

Flexibility and ease of programming are

complementary goal in building such system. If

System provides abstraction at desired level

readability, malleability, and maintainability can

be achieved.

 Portability : Program should not be biased with

particular architecture. One code written for

shared address space will work for distributed

memory architectures also and vice versa.

V. CONCLUSION
We have explored different Parallel

Platforms for programming and also observed parallel

constructs available. Pattern based approach to exploit

parallelism is evaluated for achieving ease of

programming, correctness and performance. In

general programming languages, if parallelism is

available with ease we can benefit large number of

applications.

VI. ACKNOWLEDGMENT
I wish to acknowledge my Ph.D. Advisor

and mentor Dr. V. N. Kamat for valuable guidance

and support.

REFERENCES
[1] Vandierendonck, H. , Mens, T. ―Averting

the Next Software Crisis.‖ Computer

Volume:44, Issue: 4 Digital Object

Identifier: 10.1109/MC.2011.99, Publication

Year: 2011 , Page(s): 88- 90.

[2] Kozyrakis, C.E. , Patterson, D.A. ―A new

direction for computer architecture research‖

Computer Volume:31, Issue: 11 Digital

Object Identifier: 10.1109/2.730733,

Publication Year:1998 , Page(s): 24 - 32

[3] Ananth Grama,George Kar. ―Introduction to

Parallel Computing‖ Addison-Wesley,

2003, ISBN13: 9780201648652.

[4] Timothy G. Mattson,Beverly A. Sanders,

Berna L. Massingill. ―Patterns for Parallel

Programming‖, 2005 ISBN-10: 0321228111

ISBN-13: 9780321228116,Addison-Wesley

Professional .

[5] D. Goswami, A. Singh, and B. Priess.

―Architectural skeletons: The reusable

building-blocks for parallel applications‖. In

Proceedings of the 1999 International

Conference on Parallel and Distributed

Processing Techniques and Applciations

(PDPTA’99), pages 1250–1256, 1999..

[6] S. MacDonald, D. Szafron, J. Schaeffer, and

S. Bromling. ―From patterns to frameworks

to parallel programs‖. Journal of Parallel

and Distributed Computing, 2001. .

[7] J.L. Ortega,‖Arjona Design Patterns for

Communication Components‖, Proceedings

of the 12th European Conference on Pattern

Languages of Programming and Computing

(EuroPLoP2007), Kloster Irsee, Germany,

2007

[8] Xin Liu , Jingyu Zhou , Daqiang Zhang ,

Yao Shen , Minyi Guo, ―A Parallel Skeleton

Library for Embedded Multicores Parallel

Processing‖. Workshops (ICPPW), 2010

39th International Conference on DOI:

10.1109/ICPPW.2010.21, Publication Year:

2010 , Page(s): 65- 73

[9] Kamal, H. , Wagner, A.. FG-MPI: Fine-

grain MPI for multicore and clusters,

Parallel & Distributed Processing,

Workshops and Phd Forum (IPDPSW),

2010 IEEE International Symposium,

Digital Object Identifier:

10.1109/IPDPSW.2010.5470773.

[10] G. Booch. ―Back to the future‖. IEEE

Software, 2008.

[11] F. Buschmann, K. Henney, and D. C.

Schmidt. ―Pattern-oriented Software

Architecture‖: On Pattern and Pattern

Languages, volume 5. John Wiley and Sons,

2007.

[12] Gamma Eric. ―Agile, open source,

distributed, and on-time - inside the Eclipse

development process‖, International

Conference on Software Engineering 2005,

Digital Object Identifier:

1010.1109/ICSE.2005.1553528.

[13] Ampatzoglou Apostolos, Kritikos Apostolos

,Kakarontzas, George and Stamelos, Ioannis.

‖An empirical investigation on the

reusability of design patterns and software

packages‖. Journal of System Software

Nilesh Maltare Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 3(Version 1), March 2014, pp.224-227

www.ijera.com 227 | P a g e

2011, Digital Object Identifier:

10.1016/j.jss.2011.06.047.

[14] Autili, Marco and Di Benedetto, Paolo and

Inverardi, Paola. ‖A hybrid approach for

resource-based comparison of adaptable

Java applications‖, Elsevier Journal of

Science & Comp. Programming 2013

volume 78, pages :987-1009, Digital Object

Identifier:10.1016/j.scico.2012.01.005

[15] DeHon, A. and Adams, J. and deLorimier,

M. and Kapre, N. and Matsuda, Y. and

Naeimi, H. and Vanier, M. and Wrighton,

M.. ―Design patterns for reconfigurable

computing‖. Field-Programmable Custom

Computing Machines, 2004. FCCM 2004.

12th Annual IEEE Symposium on 2004,

pages :13-23, Digital Object

Identifier:10.1109/FCCM.2004.29.

[16] Jain, Dolly and Yang, Helen J. ‖OO Design

Patterns, Design Structure, and Program

Changes‖: An Industrial Case Study.

Proceedings of the IEEE International

Conference on Software Maintenance

(ICSM'01) 2001, pages: 580 Digital Object

Identifier:10.1109/ICSM.2001.972775.

[17] Pazat,J.L.. Tools for high performance

FORTRAN: A survey. In The Data Parallel

Programming Model, volume 1132 of

Lecture Notes in Computer Science, pages

134–158. Springer–Verlag, 1996.

[18] OpenMP 4.0 Specifications, http://

openmp.org/wp/openmp-specifications/

[19] JavaDocs,http://docs.oracle.com/javase/7/do

cs/api/java/util/concurrent

[20] J.L. Ortega, ―Arjona Patterns for Parallel

Software Design‖, John Wiley & Sons,

2010.

[21] Geist, A. , Beguelin, A. , Dongarra, J. ,

Jiang, W. , Manchek, R., Sundam, V..

―PVM:A Users' Guide and Tutorial for

Network Parallel Computing‖, Page(s): 11-

17,1994

http://docs.oracle.com/javase/7/docs/api/java/util/concurrent
http://docs.oracle.com/javase/7/docs/api/java/util/concurrent
http://docs.oracle.com/javase/7/docs/api/java/util/concurrent

